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1. Introduction

Recently, a new class of dynamical solutions describing a size-modulus instability in the

ten-dimensional type IIB supergravity model have been discovered by Gibbons et al. [1]

and the authors [2]. These solutions can be always obtained by replacing the constant

modulus h0 in the warp factor h = h0 + h1(y) for supersymmetric solutions by a linear

function h0(x) of the four-dimensional coordinates xµ. Such extensions exist for many of

the well-known solutions compactified with flux on a conifold, resolved conifold, deformed

conifold and compact Calabi-Yau manifold [2].

In most of the literature, the dynamics of the internal space, namely the moduli, in a

higher-dimensional theory is investigated by utilising a four-dimensional effective theory. In

particular, effective four-dimensional theories are used in essential ways in recent important

work on the moduli stabilisation problem and the cosmological constant/inflation problem

in the IIB sugra framework [3 – 8]. Hence, it is desirable to find the relation between the

above dynamical solutions in the higher-dimensional theories and solutions in the effective

four-dimensional theory.

In the conventional approach where the non-trivial warp factor does not exist or is

neglected, an effective four-dimensional theory is derived from the original theory assuming

the “product-type” ansatz for field variables [9, 10]. This ansatz requires that each basic
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field of the theory is expressed as the sum of terms of the form f(x)ω(y), where f(x) is an

unknown function of the four-dimensional coordinates xµ, and ω(y) is a known harmonic

tensor on the internal space. Further, it is assumed that the higher-dimensional metric

takes the form ds2 = ds2(X4)+hβ
0 (x)ds2(Y), where ds2(X4) = gµν(x)dxµdxν is an unknown

four-dimensional metric, h0(x) is the size modulus for the internal space depending only on

the x-coordinates, and ds2(Y) = γpqdypdyq is a (Calabi-Yau) metric of the internal space

that depends on the x-coordinates only through moduli parameters. Under this ansatz,

the four-dimensional effective action is obtained by integrating out the known dependence

on yp in the higher-dimensional action.

The dynamical solutions in the warped compactification mentioned at the beginning,

however, do not satisfy this ansatz. Hence, in order to incorporate such solutions to the

effective theory, we have to modify the ansatz. Taking account of the structure of the

supersymmetric solution, the most natural modification of the ansatz is to introduce the

non-trivial warp factor h into the metric as ds2 = hαds2(X4) + hβds2(Y) and assume that

h depends on the four-dimensional coordinates xµ only through the modulus parameter

of the supersymmetric solution as in the case of the internal moduli degrees of freedom.

This leads to the form h = h0(x) + h1(y) for the IIB models, which is consistent with the

structure of the dynamical solutions in the ten-dimensional theory.

In the present paper, starting from this modified ansatz, we study the dynamics of the

four-dimensional effective theory and its relation to the original higher-dimensional theory

for warped compactification of the ten-dimensional type IIB supergravity and the eleven-

dimensional Hořava-Witten model. For simplicity, we assume that the moduli parameters

other than the size parameter are frozen.

The paper is organised as follows. First, in the next section, we discuss the dynam-

ics of the size modulus and the spacetime for compactification with vanishing flux in the

ten-dimensional supergravity, starting from the standard ”product-type” ansatz, for com-

parison. We show that the four-dimensional effective theory in this case is equivalent to

the original ten-dimensional theory under the ansatz. Then, in the following two sections,

we derive the four-dimensional effective theory for warped compactifications starting from

the modified ansatz and compare it with the original higher-dimensional theory. The com-

pactification on a compact Calabi-Yau manifold in the ten-dimensional IIB supergravity is

treated in §3, and the Hořava-Witten model of the eleven-dimensional heterotic M-theory

is discussed in §4. In both of these models, it is shown that the four-dimensional effective

theory contains spurious solutions that are not allowed in the original higher-dimensional

theory. Finally, Section 5 is devoted to summary and discussion.

2. Compactification with vanishing flux in the 10D supergravity

When all form fluxes vanish and the dilaton is constant, the ten-dimensional supergravity

reduces to the vacuum Einstein equations in ten dimensions, irrespective of the type of

the theory. In this reduced theory, the direct product of the four-dimensional Minkowski

spacetime and a six-dimensional Calabi-Yau space provides a supersymmetric solution.
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In this section, we briefly discuss the four-dimensional effective theory for this simple

compactification, for comparison with the cases of flux compactification studied in the

subsequent sections

2.1 Ansatz and a general solution

Let us consider the ten-dimensional spacetime with the metric

ds2(X10) = h
−1/2
0 (x) ds2(X4) + h

1/2
0 (x) ds2(Y6), (2.1)

where X4 is the four-dimensional spacetime with coordinates xµ, and Y6 is the six-dimen-

sional internal space. We assume that there exists no flux and the dilaton is constant.

Then, if X4 is flat, Y6 is a Calabi-Yau manifold, and h0 is a constant, this metric gives a

supersymmetric solution to the ten-dimensional supergravity, and h0 can be regarded as

the parameter representing the size modulus of the internal space. Hence, when we discuss

the four-dimensional dynamics of this size modulus, the metric (2.1) provides the most

natural class, for which h0 depends only on the coordinates xµ of the four-dimensional

spacetime and ds2(Y6) is some fixed metric on Y6 that does not depend on xµ .

Since we are assuming that all gauge fields vanish and the dilaton is constant, the

dynamics is completely determined by the ten-dimensional vacuum Einstein equations,

which read in the present case as

Rµν(X4) − h−1
0 DµDνh0 +

1

4
gµν(X4)h

−1
0 4Xh0 = 0, (2.2a)

Rpq(Y6) −
1

4
gpq(Y6)4Xh0 = 0, (2.2b)

where gµν(X4), Rµν(X4), 4X and Dµ denote the metric tensor, the Ricci tensor, the Lapla-

cian, and the covariant derivative with respect to the metric ds2(X4), respectively, and

gpq(Y6) and Rpq(Y6) denote the metric tensor and the Ricci tensor with respect to the

metric ds2(Y6), respectively. Because 4Xh0 depends only on xµ, and Rpq(Y6) and gpq(Y6)

depend only on the coordinates yp of Y6, (2.2b) requires that 4Xh0 is a constant. Hence,

the equations (2.2) can be reduced to

Rµν(X4) = h−1
0 [DµDνh0 − λgµν(X4)], (2.3a)

Rpq(Y6) = λgpq(Y6), (2.3b)

4Xh0 = 4λ, (2.3c)

where λ is a constant.

If we further assume that X4 is Ricci flat, from (2.3a), the modulus h0 is required to

obey the equation

DµDνh0 = λgµν(X4). (2.4)

In the case of (Dh0)
2 6≡ 0, this equation has a solution only when X4 is locally flat, and its

general solution for h0 is given by

h0(x) =
λ

2
xµxµ + aµxµ + b, (2.5)
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in terms of the four-dimensional Minkowski coordinates xµ, where aµ and b are constants

satisfying the condition a · a 6= 0. On the other hand, if Dµh0 6= 0 and (Dµh0)
2 = 0, there

exists a solution only when λ = 0, and a plane-wave-type geometry is also allowed for X4

[2].

2.2 Four-dimensional effective theory

Next, we derive the four-dimensional effective theory for the four-dimensional metric and

the size modulus in the setup of the previous subsection 2.1, i.e., under the assumptions

that the ten-dimensional metric is given by (2.1), the dilaton is constant, and all form

fluxes vanish. We also require that the internal space Y6 has a fixed geometry satisfying

(2.3b).

In this setup, the bosonic low-energy action for the ten-dimensional supergravity in

the Einstein frame is simply given by the ten-dimensional Einstein-Hilbert action

SIIB =
1

2κ̃2

∫

X10

dΩ(X10)R(X10), (2.6)

where κ̃ is a positive constant. Here, under the assumption (2.1), the ten-dimensional

scalar curvature R(X10) is expressed as

R(X10) = h
1/2
0 R(X4) + h

−1/2
0 R(Y6) −

3

2
h
−1/2
0 4Xh0 , (2.7)

where R(X4) and R(Y6) are the scalar curvatures of the metrics ds2(X4) and ds2(Y6),

respectively. Inserting this expression into the action (2.6), we obtain the four-dimensional

effective action

SIIB =
1

2κ2

∫

X4

dΩ(X4) [h0R(X4) + 6λ] , (2.8)

where κ is given by κ = (V6)
−1/2κ̃, V6 is the volume of the internal space Y6,

V6 =

∫

Y6

dΩ(Y6) , (2.9)

and we have dropped the surface term coming from 4Xh0. It is easy to see that the four-

dimensional Einstein equations and the field equation for h0 obtained from this effective

action are exactly identical to (2.3a) and (2.3c). Hence, the four-dimensional effective

theory is equivalent to the original ten-dimensional theory under the ansatz adopted in

this section.

Here, note that this effective theory has a kind of modular invariance when Y6 is a

flat torus or a Calabi-Yau space. To see this, by the conformal transformation ds2(X4) =

h−1
0 ds2(X̄4), let us rewrite the four-dimensional effective action (2.8) in terms of the metric

ḡµν in the Einstein frame as

SIIB =
1

2κ2

∫

X̄4

dΩ(X̄4)

[

R(X̄4) −
3

2
(D̄ ln h0)

2 + 6λh−2
0

]

, (2.10)

where R(X̄4) and D̄µ are the Ricci scalar and the covariant derivative with respect to the

metric ds2(X̄4). It is easy to see that the action is invariant under the transformation
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h0 → h−1
0 , provided that λ = 0. Hence, if there is a solution for which h0 increases in time,

there is also a solution with the same four-dimensional metric in the Einstein frame such

that h0 decreases in time.

3. Flux compactification in the 10D IIB supergravity

In this section, we derive an effective theory describing the dynamics of the four-dimensional

spacetime and the size modulus of the internal space for the flux compactification of the

ten-dimensional type IIB supergravity. Then, we study the difference in the spacetime

dynamics and the behavior of the size modulus for the four-dimensional effective theory

and for the ten-dimensional theory.

3.1 Ten-dimensional solutions

In our previous work [2], we derived a general dynamical solution for warped compactifi-

cation with fluxes in the ten-dimensional type IIB supergravity. In that work, we imposed

d∗(B2 ∧H3) = 0, which led to a slightly strong constraint on the free data for the solution,

especially in the case of a compact internal space. Afterward, we have noticed that this

condition is not necessary to solve the field equations, and without that condition, we can

find a more general class of solutions. Because we take this class as the starting point of

our argument, we first briefly explain how to get a general solution without that condition.

We omit the details of calculations because they are essentially contained in our previous

paper [2].

We assume that the ten-dimensional spacetime metric takes the form

ds2(X10) = A2(x, y)ds2(X4) + B2(x, y)ds2(Y6), (3.1)

where the meanings of ds2(X4) and ds2(Y6) and the other related notations are the same

as in the previous section. A(x, y) and B(x, y) are arbitrary non-vanishing functions on

X10 at the beginning. We further require that the dilaton and the form fields satisfy the

following conditions:

τ ≡ C0 + i e−Φ = ig−1
s (= const) , (3.2a)

G3 ≡ ig−1
s H3 − F3 =

1

3!
Gpqr(y) dyp ∧ dyq ∧ dyr , (3.2b)

∗Y G3 = εiG3 (ε = ±1) , (3.2c)

F̃5 = (1 ± ∗)Vpdyp ∧ Ω(X4) = V ∧ Ω(X4) ∓ A−4B4 ∗Y V, (3.2d)

where gs is a constant representing the string coupling constant, and ∗ and ∗Y are the

Hodge duals with respect to the ten-dimensional metric ds2(X10) and the six-dimensional

metric ds2(Y6), respectively.1

1In the present paper, we have changed the definition of V : A
4
B

−4
V in [2] corresponds to V in the

present paper.
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Under these assumptions, the two of the field equations,

¤τ + i
(∇τ)2

τ2
= −

i

2
G3 · G3, (3.3a)

∗F̃5 = ±F̃5, (3.3b)

are automatically satisfied, and the rest are written2

dG3 = 0, (3.4a)

∇ · G3 = ∗d ∗ G3 = −iG3 · F̃5, (3.4b)

dF̃5 = H3 ∧ F3, (3.4c)

RMN =
gs

4

[

Re (GMPQG∗
N

PQ) −
1

2
G3 · G

∗
3gMN

]

+
1

96
F̃NP1···P4FM

P1···P4. (3.4d)

Among these equations, the first together with the assumptions (3.2b) and (3.2c)

implies that G3 is a closed imaginary-self-dual (ISD) 3-form on Y6 that does not depend

on the coordinates xµ. Then, (3.4b) can be rewritten as

(

V ∓ εdy(A
4)

)

· G3 = 0, (3.5)

where dy = dyp∂p. Since G3 is an ISD form on Y6, and V and dy(A
4) are 1-forms on Y6,

it follows from this equation that

V = ±εdy(A
4), (3.6)

provided G3 6= 0.

Inserting this expression into (3.4c), we obtain the following two equations:

∂µ(A−4B4∂p(A
4)) = 0, (3.7a)

(D̂ · (A−4B4D̂(A4))Y = −
gs

2
(G3 · Ḡ3)Y, (3.7b)

where D̂p is the covariant derivative with respect to the metric ds2(Y6), and (α·β)Y denotes

the inner product of forms α and β on Y6 with respect to the metric ds2(Y6).

Next, we consider the Einstein equations. First, from Rap = 0 and (3.7a), we find that

we can set

A = h(x, y)−1/4, B = h(x, y)1/4, (3.8)

by appropriately redefining ds2(X4) and ds2(Y6). Correspondingly, F̃5 and (3.7b) can be

written as

F̃5 = ±ε(1 ± ∗)d(h−1) ∧ Ω(X4), (3.9)

4Yh = −
gs

2
(G3 · Ḡ3)Y. (3.10)

2In [2], the minus sign at the right-hand side of (3.4b) in the present paper was dropped by mistake,

and the first equation of (2.8) in [2] had the wrong sign. If these errors are corrected, ε in (2.9)-(2.12a),

(2.15)-(2.19) and (2.33b) of [2] should be replaced by −ε.
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With these expressions, the ten-dimensional Einstein equations (3.4d) read

hRµν(X4) − DµDνh +
1

4
gµν(X4)4Xh = 0, (3.11a)

∂µ∂ph = 0, (3.11b)

Rpq(Y6) −
1

4
gpq(Y6)4Xh = 0. (3.11c)

From the second of these equations, we immediately see that the warp factor h can be

expressed as

h(x, y) = h0(x) + h1(y). (3.12)

Further, if we require that dyh 6= 0, the rest of the equations can be reduced to

Rµν(X4) = 0, (3.13a)

DµDνh0 = λgµν(X4), (3.13b)

Rpq(Y6) = λgpq(Y6). (3.13c)

Thus, we have found that the most general solutions satisfying the conditions (3.1)

and (3.2) are specified by a Ricci flat spacetime X4, an Einstein space Y6, a closed ISD

3-form G3 on Y6, and the function h(x, y) that is the sum of h0(x) satisfying (3.13b) and

h1(x) satisfying (3.10). The additional constraint on G3, dy[h
−2(B2 · dB2)Y] = 0, in Ref.

[2] does not appear. Further, closed ISD 3-forms on Y6 are in one-to-one correspondence

with real harmonic 3-forms on Y6. Hence, this class of dynamical solutions exist even for

a generic compact Calabi-Yau internal space, if we allow h1(y) to be a singular function.

This singular feature of h in the compact case with flux arises because h is a solution to the

Poisson equation (3.10) and has nothing to do with the dynamical nature of the solution.

It is shared by the other flux compactification models.

Here, note that the Ricci flatness of X4 is required from the Einstein equations. This

should be contrasted with the previous case with no warp. This point is quite important in

the effective theory issue, as we see soon. Anyway, as explained in the previous section, the

Ricci flatness of X4 and (3.13b) are consistent only when X4 is locally flat if (Dh0)
2 6= 0.

3.2 Four-dimensional effective theory

Now we study the four-dimensional effective theory that incorporates the dynamical solu-

tions obtained in the previous subsection. For simplicity, we do not consider the internal

moduli degrees of freedom of the metric of Y6 or of the solution h1(y) in the present pa-

per. Then, in its x-independent subclass with λ = 0, we have only one free parameter h0.

When we rescale ds2(Y6) by a constant ` as `2ds2(Y6) → ds2(Y6), we have to rescale h as

h/`4 → h. We can easily see that the corresponding rescaled h1 satisfies (3.10) again with

the same G3 as that before the rescaling. We can also confirm that the D3 brane charges

associated with the 5-form flux do not change by this scaling. In contrast, h0 changes its

value by this rescaling. Therefore, h0 represents the size modulus of the Calabi-Yau space

Y6.
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From this observation, we construct the four-dimensional effective theory for the class

of ten-dimensional configurations specified as follows. First, we assume that X10 has the

metric

ds2(X10) = h−1/2(x, y) ds2(X4) + h1/2(x, y) ds2(Y6), (3.14)

where h = h0(x) + h1(y) and ds2(Y6) is a fixed Einstein metric on Y6 satisfying (3.13c),

while ds2(X4) is an arbitrary metric on X4. Further, we assume that the dilaton is frozen

as in (3.2a), G3 is given by a fixed closed ISD 3-form on Y6, h1(y) is a fixed solution to

(3.10), and F̃5 is given by (3.9). Hence, the metric of X4 and the function h0 on it are the

only dynamical variables in the effective theory.

The four-dimensional effective action for these variables can be obtained by evaluating

the ten-dimensional action of the IIB theory

SIIB =
1

2κ̃2

∫

X10

dΩ(X10)

[

R(X10) −
∇M τ̄∇Mτ

2(Im τ)2
−

G3 · Ḡ3

2Im τ
−

1

4
F̃ 2

5

]

±
i

8κ̃2

∫

X10

C4 ∧ G3 ∧ Ḡ3

Im τ
, (3.15)

for the class of configurations specified above. In general, there is a subtlety concerning

the action of the type IIB supergravity, because the correct field equations can be obtained

by imposing the self-duality condition (3.3b) after taking variation of the action in general.

In the present case, however, since we are only considering configurations (3.9) satisfying

the self-duality condition, this problem does not affect our argument. We can obtain the

”correct” effective action by simply inserting (3.9) into the above ten-dimensional action.

First, for the metric (3.14) with h = h0(x)+h1(y), the ten-dimensional scalar curvature

R(X10) is expressed as

R(X10) = h1/2R(X4) + h−1/2R(Y6) −
3

2
h−1/24Xh0 −

1

2
h−3/24̂Yh1, (3.16)

where 4X and 4̂Y are the Laplacian with respect to the metrics ds2(X4) and ds2(Y6),

respectively. Inserting this expression, (3.9), (3.10) and (3.13c) into (3.15), we get

SIIB =
1

2κ2

∫

X4

dΩ(X4)

[

H(x)R(X4) + 6λ +
1

2V6

∫

Y6

dΩ(Y6)h−14̂Yh1

]

±
i

8κ̃2

∫

X10

C4 ∧ G3 ∧ Ḡ3

Imτ
, (3.17)

where we have dropped the surface term coming from 4Xh0, κ = (V6)
−1/2κ̃, and H(x) is

defined by

H(x) = h0(x) + c; c := V −1
6

∫

Y6

dΩ(Y6)h1. (3.18)

The Chern-Simons term in this expression can be rewritten as follows. First, (3.10) can be

written

iεgsG3 ∧ Ḡ3 = 2d( ∗Ydh1). (3.19)
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From this, it follows that

igsC4 ∧ G3 ∧ Ḡ3 = d(2εC4 ∧ ∗Ydh1) ∓ 2h−2(dh1 · dh1)Y Ω(X4) ∧ Ω(Y6). (3.20)

Hence, we have

±
i

8κ̃2

∫

X10

C4 ∧ G3 ∧ Ḡ3

Imτ
= −

1

4V6κ2

∫

X4

dΩ(X4)

∫

Y6

dΩ(Y6)
4̂Yh1

h

+
1

4κ2V6

∫

X10

d
[(

±εC4 − h−1Ω(X4)
)

∧ ∗Ydh1

]

. (3.21)

Note that apart from the boundary term, the contribution of Chern-Simons term is canceled

by the term containing h1 in (3.17), which came from the ten-dimensional scalar curvature

and the 3-form flux. Consequently, neglecting the boundary term, we obtain the following

four-dimensional effective action

SIIB =
1

2κ2

∫

X4

dΩ(X4) [HR(X4) + 6λ] . (3.22)

This effective action has the same form as (2.8). Hence, it gives the four-dimensional

field equations of the same form as in the no-flux case:

Rµν(X4) = H−1 [DµDνH − λgµν(X4)] , (3.23a)

4XH = 4λ. (3.23b)

If the four-dimensional spacetime is Ricci flat, these equations reproduce the correct equa-

tion for h0(x) = H−c obtained from the ten-dimensional theory in the previous subsection.

However, the Ricci flatness of X4 is not required in the effective theory unlike in the ten-

dimensional theory. Hence, the class of solutions allowed in the four-dimensional effective

theory is much larger than the original ten-dimensional theory.

In particular, the effective theory has a modular invariance similar to that found in the

no-flux Calabi-Yau case with λ = 0. In fact, by the conformal transformation ds2(X4) =

H−1ds2(X̄4), (3.22) is expressed in terms of the variables in the Einstein frame as

SIIB =
1

2κ2

∫

X̄4

dΩ(X̄4)

[

R(X̄4) −
3

2
(D̄ ln H)2 + 6λH−2

]

, (3.24)

where R(X̄4) and D̄µ are the scalar curvature and the covariant derivative with respect to

the metric ds2(X̄4). The corresponding four-dimensional Einstein equations in the Einstein

frame and the field equation for H are given by

Rµν(X̄4) =
3

2
D̄µ ln H D̄ν ln H − 3λH−2gµν(X̄4), (3.25a)

4X̄ ln H = 4λH−2, (3.25b)

where 4X̄ is the Laplacian with respect to the metric ds2(X̄4). It is clear that for λ = 0,

this action and the equations of motion are invariant under the transformation H → k/H,

where k is an arbitrary positive constant.
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This transformation corresponds to the following transformation in the original ten-

dimensional metric. Let us denote the new metric of X4 and the function h obtained

by this transformation by ds′2(X4) and h′, respectively. Then, since the transformation

preserves the four-dimensional metric in the Einstein frame, ds′2(X4) is related to ds2(X4)

as ds′2(X4) = (H2/k)ds2(X4). In the meanwhile, from H ′ = k/H = h′
0 + c, h′ is expressed

in terms of the original h0 as

h′ =
k

h0(x) + c
− c + h1(y). (3.26)

The corresponding ten-dimensional metric is written

ds2 = k−1H2(h′)−1/2ds2(X4) + (h′)1/2ds2(Y6). (3.27)

It is clear that this metric and h′ do not satisfy the original ten-dimensional field equations.

Hence, the modular-type invariance of the four-dimensional effective theory is not the

invariance of the original ten-dimensional theory.

4. Hořava-Witten model in the 11D heterotic M-theory

A dynamical solution similar to that of the ten-dimensional IIB discussed in the previous

section was found by Chen et al. [11] for the five-dimensional effective theory obtained

from the Hořava-Witten model of the eleven-dimensional M-theory. In this section, we

derive a four-dimensional effective theory for this five-dimensional theory.

4.1 Five-dimensional effective theory

We first briefly summarise the argument leading to the five-dimensional effective theory for

the Hořava-Witten model of the eleven-dimensional M-theory. In this model, we first com-

pactify the M-theory in eleven dimensions over S1/Z2. Let the length of this compactifying

circle S1 be 2L. Then, it is expected that E8 gauge fields and their superpartners are cre-

ated on the two orientifold planes to cancel the anomalies, leading to the E8×E8 heterotic

theory in ten dimensions in the limit of small L. Hence, the action of the Hořava-Witten

model is given by [12, 13]

SHW =
1

2κ̂2

∫

X11

[

dΩ(X11)

(

R(X11) −
1

2
F 2

4

)

−
1

12κ̂2
A3 ∧ F4 ∧ F4

]

−
1

8πκ̂2

(

κ̂

4π

)2/3
∑

j=1,2

∫

X
(j)
10

dΩ(X10)

[

tr(F (j))2 −
1

2
trR2

]

, (4.1)

where κ̂ is the positive constant, R(X11) is the scalar curvature with respect to the eleven-

dimensional metric ds2(X11), A3 is the 3-form gauge field with the field strength F4 = dA3,

and F (1) and F (2) are the E8 gauge field strengths. We choose the range −L ≤ z ≤ L for the

coordinate of S1 with the end points being identified and impose the Z2 symmetry under

the transformation z → −z. The orientifold planes of this transformation, X
(i)
10 (i = 1, 2),

correspond to z = 0 and z = L. For simplicity, we will not consider the boundary gauge

fields in the present paper.
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If we further compactify this model over a six-dimensional internal space Y6, then

we obtain a four-dimensional model. In practice, the argument becomes simpler if we

reverse the order of compactifications, i.e., if we compactify the M-theory first over Y6 to

X11 = X5 ×Y6 and then over S1/Z2 to X5 = X4 × S1/Z2, as was done by Lukas et al [14].

In the first step, we obtain an effective five-dimensional theory. At this step, we assume

that the eleven-dimensional metric takes the form

ds2(X11) = e2φ(x̃)/3ds2(X5) + e−φ(x̃)/3ds2(Y6), (4.2)

where x̃a are the coordinates of the five-dimensional spacetime X5, and that the 4-form

flux is expressed as

F4 = (ω · Ω(Y6))Y , (4.3)

where ω is a 2-form on Y6. We can show that even if we start from a more general warped

metric of the form ds2(X11) = eαds2(X5)+eβds2(Y6), the field equations require both α and

β to depend either only on x̃a or only on yp, if F4 takes the form (4.3). It was also shown by

Curio and Krauss in [15, 16] that the same result is obtained for supersymmetric solutions

if X11 is a warped product X4 ×Y6 ×R with the four-dimensional Poincare invariance and

F4 lives on Y6 × R. Hence, the above choice for the metric form is quite natural when we

study dynamical instability of supersymmetric solutions in the Hořava-Witten model.

From the field equations

dF4 = 0, d ∗F4 +
1

2
F4 ∧ F4 = 0, (4.4)

we obtain

∂aω = 0, dω = 0, D̂ · ω̂ = 0, (4.5)

where ω̂ is a 2-form on Y6 such that ω̂pq = ωpq and their indices are raised and lowered by

the metric ds2(Y6). Next, the traceless part of the Einstein equations for Rpq gives

Rpq(Y6) −
1

6
R(Y6)gpq(Y6) = −

eφ

2

(

ω̂prω̂q
r −

1

3
ω̂2ĝpq

)

. (4.6)

From this, it follows that if ∂aφ 6= 0, both sides of this equation should vanish separately.

Hence, taking account of the Bianchi identity, we obtain

Rpq(Y6) = λgpq(Y6), (4.7)

ω̂prω̂q
r =

1

3
ω̂2gpq(Y6). (4.8)

Inserting these relations to the Rp
p equation, we have

6λ + e−φ
¤X5φ = eφω̂2, (4.9)

from which and the rest of the Einstein equations, we obtain the constraint ω̂2 = 2m2 =

const and the field equations in the five-dimensional theory

Rab(X5) =
1

2
∂aφ∂bφ +

(

m2

3
e2φ − 2λeφ

)

gab(X5), (4.10a)

¤X5φ − 2m2e2φ = −6λeφ, (4.10b)

where ¤X5 is the D’Alermbertian for the five-dimensional metric ds2(X5).
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These field equations can be obtained from the five-dimensional effective action given

by [11, 14]

SHW =
1

2κ̃2

∫

X5

dΩ(X5)

[

R(X5) −
1

2
(D̃φ)2 − m2e2φ + 6λeφ

]

, (4.11)

where κ̃ = (V6)
−1/2κ̂, V6 is the volume of Y6, and D̃a denotes the covariant derivative with

respect to the metric ds2(X5).

4.2 Four-dimensional effective theory

In the Hořava-Witten model, a four-dimensional theory is obtained from the five-dimen-

sional theory by compactification over S1/Z2. Without loss of generality, the metric ob-

tained by this compactification can be written ds2(X5) = eγds2(X4) + eδdz2. In general,

the field equations do not lead to no relation between the warp factors eγ and eδ in this

theory, and there exists no natural reduction to four dimensions. Hence, in order to obtain

a four dimensional reduction, we have to impose some relation between eγ and eδ. In the

present paper, to include the dynamical solution found by Chen et al. [11], we adopt the

ansatz that ds2(X5) can be written

ds2(X5) = h1/2(x, z) ds2(X4) + h(x, z) dz2, (4.12)

and the warp factor h has the structure

h(x, z) = h0(x) + h1(z). (4.13)

We also assume that Y6 is a Calabi-Yau space, i.e. λ = 0. As is shown in appendix A, the

most general solution to the field equations (4.10) satisfying this ansatz and the conditions

∂µh0 6= 0 and ∂zh1 6= 0 is given by

Rµν(X4) = 0, h(x, z) = h0(x) + kz, e2φ = h−3, (4.14)

where k2 = 8m2/3, and h0 is a solution to

DµDνh0 = 0. (4.15)

In the case (Dh0)
2 6= 0, which requires that X4 is locally flat [2], this solution (4.14) is

identical to the solution found by Chen et al. [11] (See appendix A).

On the basis of this result, we construct a four-dimensional effective theory of the

Hořava-Witten model for the class of five-dimensional configurations in which the metric

is expressed as (4.12) with h of the form (4.13), and φ is related to h by

φ = −
3

2
ln h. (4.16)

For this class of configurations, the five-dimensional action (4.11) can be written

SHW =
1

2κ̃2

∫

X4

dΩ(X4)

∫ L

0
dz

[

hR(X4) −
2∂2

zh1

h1/2
+

5(∂zh1)
2

8h3/2
−

3k2

8h3/2

]

. (4.17)
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In order to perform the integration over z, we have to specify h1(z). In the present case,

the only possible choice is

h1(z) = kz; k2 =
8m2l2

3
. (4.18)

However, the simple insertion of this expression into the above action does not give a

correct result. This is because the variation of the action (4.17) with respect to h produces

boundary terms at the orientifold planes z = 0, L, which do not vanish for the above choice

of h1. By inspecting the structure of these boundary terms, we find that if we add the

additional term to the action given by

Sboundary =
1

2κ̃2

∫

X4

dΩ(X4)

[

1

2
h−1/2k

]z=L

z=0

, (4.19)

the correct field equations are obtained in five dimensions. Therefore, the four-dimensional

effective action is given by

S ≡ SHW + Sboundary =
1

2κ2

∫

X4

dΩ(X4)H(x)R(X4),

where κ = (L)−1/2κ̃, and H(x) is defined by

H(x) = h0(x) +
kL

2
. (4.20)

Thus, we have obtained the same four-dimensional effective action as in the case of

the type IIB supergravity in ten dimensions. In particular, the four-dimensional effective

theory of the Hořava-Witten model allows solutions that cannot be uplifted to solutions

in five dimensions or in eleven dimensions and has the same modular invariance as in the

previous case, which is not respected in the original higher-dimensional theory, with respect

to the size modulus in the Einstein frame.

5. Conclusion

In the present paper, we have derived four-dimensional effective theories for the space-

time metric and the size modulus of the internal space for warped compactification with

flux in the ten-dimensional type IIB supergravity and in the Hořava-Witten model of the

eleven-dimensional M-theory. The basic idea was to consider field configurations in higher

dimensions that are obtained by replacing the constant size modulus in supersymmetric

solutions for warped compactifications, by a field on the four-dimensional spacetime. The

effective action for this moduli field and the four-dimensional metric has been determined

by evaluating the higher-dimensional action for such configurations. In all cases, the dy-

namical solutions in the ten- and eleven-dimensional theories found by Gibbons et al. [1],

Kodama and Uzawa [2] and Chen et al. [11] were reproduced in the four-dimensional

effective theories.

In addition to this, we have found that these four-dimensional effective theories have

some unexpected features. First, the effective actions of both theories are exactly identical

to the four-dimensional effective action for direct-product type compactifications with no
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flux in ten-dimensional supergravities. In particular, the corresponding effective theory has

a kind of modular invariance with respect to the size modulus field in the Einstein frame.

This implies that if there is a solution in which the internal space expands with the cosmic

expansion, there is always a conjugate solution in which the internal space shrinks with

the cosmic expansion.

Second, the four-dimensional effective theory for warped compactification allows solu-

tions that cannot be obtained from solutions in the original higher-dimensional theories.

The modular invariance in the four-dimensional theory mentioned above is not respected

in the original higher-dimensional theory either. This situation should be contrasted with

the no-warp case in which the four-dimensional effective theory and the original higher-

dimensional theory are equivalent under the product-type ansatz for the metric structure.

This result implies that we have to be careful when we use a four-dimensional effective

theory to analyse the moduli stabilisation problem and the cosmological problems in the

framework of warped compactification of supergravity or M-theory.
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A. Solutions of the 5D Hořava-Witten model

In this appendix, we prove that the solutions specified by (4.14) and (4.15) exhaust all

solutions to the field equations (4.10) in the five-dimensional Hořava-Witten theory, if we

assume that the five-dimensional metric takes the form

ds2(X5) = h1/2 ds2(X4) + hdz2, (A.1)

with

h = h0(x) + h1(z); ∂µh0 6= 0, ∂zh1 6= 0. (A.2)

For the metric (A.1), the field equations (4.10) can be written

D · (hDφ) + ∂z(h
1/2∂zφ) = 2m2h3/2e2φ, (A.3a)

Rµν(X4) −
1

4
gµν(X4)R(X4) +

9

8h2

[

DµhDνh −
1

4
(Dh)2gµν(X4)

]

−
1

h

[

DµDνh −
1

4
4Xhgµν(X4)

]

=
1

2

[

DµφDνφ −
1

4
(Dφ)2gµν(X4)

]

, (A.3b)

R(X4) −
24Xh

h
+

9(Dh)2

8h2
−

∂2
zh

h3/2
+

(∂zh)2

2h5/2
=

1

2
(Dφ)2 +

4

3
m2e2φh1/2, (A.3c)

−
3

4
h1/2Dµ

(

∂zh

h3/2

)

=
1

2
∂µφ∂zφ, (A.3d)

−
4Xh

2h1/2
−

∂2
zh

h
+

5(∂zh)2

4h2
=

1

2
(∂zφ)2 +

1

3
m2e2φh, (A.3e)
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where R(X4), Rµν(X4), 4X and Dµ are the scalar curvature, the Ricci tensor, the Laplacian

and the covariant derivative with respect to the metric ds2(X4).

First, from the assumption (A.2), (A.3d) reduces to

∂µφ =
9∂zh1

4h2∂zφ
∂µh0. (A.4)

Under the condition ∂zh1 6= 0, this equation is equivalent to

φ = Φ(h0, h1), Φ0Φ1 =
9

4h2
, (A.5)

where Φ0 ≡ ∂h0Φ and Φ1 ≡ ∂h1Φ.

With the help of these relations, (A.3b) can be written

Rµν(X4) −
1

4
gµν(X4)R(X4) +

(

9

8h2
−

1

2
Φ2

0

)[

Dµh0Dνh0 −
1

4
(Dh0)

2gµν(X4)

]

−
1

h

[

DµDνh0 −
1

4
4Xh0gµν(X4)

]

= 0. (A.6)

Differentiating this equation by y, we get

(

9

4h
+ h2Φ0Φ01

)[

Dµh0Dνh0 −
1

4
(Dh0)

2gµν(X4)

]

= DµDνh0 −
1

4
4Xh0gµν(X4), (A.7)

where Φ01 ≡ ∂h0∂h1Φ. The factor in the square bracket on the left-hand side of this

equation does not vanish under the condition ∂µh0 6= 0 because of the regularity of gµν

as a matrix, and the right-hand side does not depend on z. Hence, the first factor on the

left-hand side should be independent of z:

0 = ∂h1

(

9

4h
+ h2Φ0Φ01

)

=
9

4
∂h0∂h1 ln(hΦ1). (A.8)

Solving this with respect to Φ1 and using (A.5), we obtain

Φ0 =
9

4ha(h0)b(h1)
, Φ1 =

a(h0)b(h1)

h
. (A.9)

The consistency of these equations, ∂h1Φ0 = ∂h0Φ1, leads to

4

9

[

−a2 + ha (∂h0a)
]

+
∂h1b

b3
h +

1

b2
= 0. (A.10)

Differentiating this equation by h0 yields

4

9
a (∂h0a) + h0∂h1

(

∂h1b

b3

)

−
∂h1b

b3
+ h1∂h1

(

∂h1b

b3

)

= 0. (A.11)

This equation implies that a(∂h0a) is a linear function of h0. Hence, we get

a2 = ph2
0 + 2qh0 + s,

1

b2
=

4

9

(

ph2
1 − 2qh1 + s

)

, (A.12)
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where p, q and s are constant parameters. Inserting these expressions into (A.9), we obtain

Φ0 = ±
3

2h

√

ph2
1 − 2qh1 + s

ph2
0 + 2qh0 + s

, Φ1 = ±
3

2h

√

ph2
0 + 2qh0 + s

ph2
1 − 2qh1 + s

. (A.13)

This can be integrated to yield

e∓2φ/3 =
c

h

[

−ph0h1 + q(h0 − h1) + s +
√

ph2
0 + 2qh0 + s

√

ph2
1 − 2qh1 + s

]

, (A.14)

where c is a constant.

Using this expression for φ, (A.6) can be rewritten as

h

[

Rµν(X4) −
1

4
gµν(X4)R(X4)

]

− DµDνh0 +
1

4
4Xh0gµν(X4)

+
9

8

p(h0 − h1) + 2q

ph2
0 + 2qh0 + s

[

Dµh0Dνh0 −
1

4
(Dh0)

2gµν(X4)

]

= 0. (A.15)

Note that the left-hand side of this equation depends on h1 linearly. Thus, this equation

can be decomposed into two equations

Rµν(X4) −
1

4
gµν(X4)R(X4) =

9

8

p

ph2
0 + 2qh0 + s

[

Dµh0Dνh0 −
1

4
(Dh0)

2gµν(X4)

]

, (A.16a)

DµDνh0 −
1

4
4Xh0gµν(X4) =

9

4

ph0 + q

ph2
0 + 2qh0 + s

[

Dµh0Dνh0 −
1

4
(Dh0)

2gµν(X4)

]

. (A.16b)

Multiplying the second of these by Dνh0, we obtain

Dµ(Dh0)
2 −

1

2
(4Xh0)Dµh0 =

27

16

ph0 + q

ph2
0 + 2qh0 + s

(Dh0)
2Dµh0. (A.17)

From this, we find that if h0 satisfies (Dh0)
2 = 0, then 4Xh0 = 0 holds. On the other

hand, if (Dh0)
2 6= 0, this equation can be deformed as

Dµ

[

ln(Dh0)
2 −

27

32
ln(ph2

0 + 2qh0 + s)

]

=
4Xh0

2(Dh0)2
Dµh0. (A.18)

This equation implies that both (Dh0)
2 and 4Xh0 depend on xµ only through h0, i.e., can

be regarded as functions of h0.

Next, we analyse (A.3c) and (A.3e), which can be now written

R(X4) −
2

h
4Xh0 +

(

9

8h2
−

Φ2
0

2

)

(Dh0)
2 −

∂2
zh1

h3/2
+

(∂zh1)
2

2h5/2
=

4m2

3
e2φh1/2, (A.19a)

−
4Xh0

2h
−

∂2
zh1

h3/2
+

(∂zh1)
2

h1/2

(

5

4h2
−

Φ2
1

2

)

=
m2

3
h1/2e2φ. (A.19b)

Here, note that the first equation and the above argument imply that R(X4) can be regarded

as a function of h0. Further, by eliminating eφ from these equations, we obtain

h3/2A + h1/2B + 3∂2
zh1 +

9

2
(∂zh1)

2

[

p(h0 − h1) + 2q

ph2
1 − 2qh1 + s

]

= 0, (A.20)
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where A and B are defined by

A = R(X4) −
9p

8

(Dh0)
2

ph2
0 + 2qh0 + s

, B =
9(Dh0)

2

4

ph0 + q

ph2
0 + 2qh0 + s

. (A.21)

Note that A and B can be regarded as functions of h0 from the above arguments.

Differentiating (A.20) by y twice, we get

−B + h(3A + 4∂h0B) + h2(6∂h0A + 4∂2
h0

B) + h3∂2
h0

A = 0. (A.22)

Since the left-hand side of this equation is a polynomial of h1, the coefficients of powers of

h should vanish separately. This requires A = B = 0. Hence, (A.20) is equivalent to

p = 0, q(Dh0)
2 = 0, R(X4) = 0, ∂2

zh1 +
3q(∂zh1)

2

s − 2qh1
= 0. (A.23)

This equation implies that q = 0 if (Dh0)
2 6= 0. On the other hand, in the case of

(Dh0)
2 = 0, which requires 4Xh0 = 0, (A.19a) reduces to

−h∂2
zh1 +

1

2
(∂zh1)

2 =
4m2

3
h3e2φ. (A.24)

The left-hand side of this equation is linear in h0. Hence, taking account of (A.14), we find

that there exists a solution for h1 only when q = 0 also in the case of (Dh0)
2 = 0.

Thus, we can assume that p = q = R(X4) = 0. Then, (A.14) and the last equation of

(A.23) reduce to

e∓2φ/3 =
2cs

h
, ∂zh1 = k. (A.25)

Inserting these expressions into (A.19b), we obtain

e2φ/3 =
2cs

h
,

k2

(2cs)3
=

8m2

3
, 4Xh0 = 0. (A.26)

Hence, (A.16) reduces to Rµν(X4) = 0 and DµDνh0 = 0.

To summarise, under the conditions (A.1) and (A.2), the most general solution of the

field equations (4.10) is given by

Rµν(X4) = 0, h(x, z) = h0(x) + kz, e2φ = l2h−3, (A.27)

where l is a constant, and h0 and k satisfy the conditions

DµDνh0 = 0, k2 =
8

3
m2l2. (A.28)

Here, we can set l = 1 by redefining k, z and ds2(X4). Further, a solution with (Dh0)
2 6= 0

exists only when X4 is locally flat, and in that case, h0 can be written as a linear combination

of the Minkowski coordinates [2]. This solution with Minkowskian X4 is identical to the

solution found by Chen et al. [11].
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